首页> 外文OA文献 >A Coalition Formation Algorithm for Multi-Robot Task Allocation in Large-Scale Natural Disasters
【2h】

A Coalition Formation Algorithm for Multi-Robot Task Allocation in Large-Scale Natural Disasters

机译:一种用于多机器人任务分配的联盟形成算法   大规模自然灾害

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In large-scale natural disasters, humans are likely to fail when they attemptto reach high-risk sites or act in search and rescue operations. Robots,however, outdo their counterparts in surviving the hazards and handling thesearch and rescue missions due to their multiple and diverse sensing andactuation capabilities. The dynamic formation of optimal coalition of theseheterogeneous robots for cost efficiency is very challenging and research inthe area is gaining more and more attention. In this paper, we propose a novelheuristic. Since the population of robots in large-scale disaster settings isvery large, we rely on Quantum Multi-Objective Particle Swarm Optimization(QMOPSO). The problem is modeled as a multi-objective optimization problem.Simulations with different test cases and metrics, and comparison with otheralgorithms such as NSGA-II and SPEA-II are carried out. The experimentalresults show that the proposed algorithm outperforms the existing algorithmsnot only in terms of convergence but also in terms of diversity and processingtime.
机译:在大规模的自然灾害中,人类试图到达高风险地点或采取搜救行动时可能会失败。然而,由于机器人具有多种多样的传感和致动能力,它们在幸存的危险和执行搜索与救援任务方面胜过同类机器人。为了成本效益而动态地形成这些异构机器人的最佳联盟非常具有挑战性,该领域的研究越来越受到关注。在本文中,我们提出了一种新颖的启发式方法。由于大规模灾难环境中的机器人数量非常庞大,因此我们依赖于量子多目标粒子群优化(QMOPSO)。该问题被建模为一个多目标优化问题。进行了具有不同测试用例和度量的模拟,并与诸如NSGA-II和SPEA-II的其他算法进行了比较。实验结果表明,该算法不仅在收敛性方面,而且在多样性和处理时间方面均优于现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号